Bearbeiten von: [Änderungshistorie]
  Zeilenumbrüche automatisch mache ich selbst mit HTML    

Ich möchte eine Mail an , nachdem mein Vorschlag bearbeitet ist.
  Nachricht zur Änderung:

Input assistance tools (JavaScript): [Link extern intern] [MathML?] [$$?]
[fed-area] [LaTeX-inline] [LaTeX-display] [Tikz] [hide-area][show-area] [Source code [num.]][?]
[Link zurück zum Artikel]

Vorschau:
Konstruktion von Matrixgruppen mit (modularer) Charaktertheorie
Eine Geschichte, die mich nachhaltig fasziniert hat, ist die Entdeckung der ersten Jankogruppe \( J_1 \). Noch bevor die Existenz dieser sporadischen endlichen einfachen Gruppe definitiv klar war, hatte Janko bereits ihre (modularen) Charaktertafeln in jeder Charakteristik gefunden, und mit diesen Informationen zwei konkrete Matrizen bestimmt, die \( J_1 \) als Untergruppe von \( \mathrm{GL}(7,\mathbb{F}_{11}) \) erzeugen müssen (sofern sie denn überhaupt existiert!). Die tatsächliche Existenz von \( J_1 \) wurde erst später von Ward mit Hilfe eines Computerprogramms bewiesen. In diesem Artikel möchte ich Jankos Ansatz anhand eines sehr viel einfacheren Beispiels demonstrieren. Wir betrachten hier die symmetrische Gruppe \( S_5 \). Indem wir alle (modularen) Charaktertafeln dieser Gruppe aufstellen, werden wir zeigen, dass sich die \( S_5 \) als Untergruppe in der \( \mathrm{GL}(4,\mathbb{K}) \) bezüglich jedem beliebigen Körper \( \mathbb{K} \) wiederfindet. Darüber hinaus werden wir zeigen, dass die \( S_5 \) genau dann als Untergruppe von \( \mathrm{GL}(3,\mathbb{K}) \) auftritt, wenn \( \mathbb{K} \) ein Körper der Charakteristik 5 ist. Mit Hilfe eines entsprechenden Charakters werden wir auf systematische Weise eine zur \( S_5 \) isomorphe Untergruppe der \( \mathrm{GL}(3,\mathbb{F}_5) \) konstruieren. Dieser Artikel richtet sich an alle, die ein klein wenig Vorwissen aus der herkömmlichen Darstellungstheorie endlicher Gruppen mitbringen und noch eine Motivation für die Beschäftigung mit der (noch viel spannenderen!) modularen Darstellungstheorie suchen.
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2022 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]